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1 Axioms And Definitions[1]

Def: A Lie Algebra is a pair (g, [·, ·]) where g is a vector space over some field K and the Lie Bracket, [·, ·],
is a bilinear map from g× g to g satisfying the following two axioms.

I. [x, x] = 0 for all x ∈ g ( anti-commutativity)

II. [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (Jacobi Equation)

A first remark is that g is often used to denote the pair (g, [·, ·]) and the specific choice of a lowercase g
hints at the connection between lie algebras and groups which are often denoted as G. Secondly, Axiom I is
referred to as anti-commutativity because it immediately implies the notion of anti-commutativity that we
are familiar with:

0 = [x+ y, x+ y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x].

Further, [x, y] = −[y, x] implies [x, x] = 0, so our theory is independent of whether we choose Axiom I to
be the standard notion of anti-commutativity or the one defined above.

While this axiomatization and the abstract idea of a lie algebra may, at first glance, appear quite contrived,
a simple investigation shows that the axioms are satisfied if [x, y] is interpreted as the commutation x◦y−y◦x.
Of course, for this interpretation to work, one would need the theory of the ◦ operation. On this note, an
important result is the following:

Prop: Let A be a vector space over K and ◦ : A×A→ A be a bilinear, associative map. Then

[x, y] := x ◦ y − y ◦ x

defines a lie bracket over A. The proof is easy to check.

Philosophy: It is very natural to think of the lie bracket as a commutator of an associative algebra because
this was the initial motivation for the theory[2]. The main mission in physics is to develop more general
theories which contains the old theories embedded as special cases (e.g., Newtonian Gravitation ↪→ General
Relativity, QM ↪→ QFT). The situation in mathematics is no different which is why we resist the urge to
restrict the conversation to commutation. The embedding is made more clear by the following definition:

Def: A representation of g is a pair (V, ρ) where V is a also a vector space overK and ρ is a [·, ·]−homomorphism
from g to gl(V ) which is the general linear group over V equipped with the natural commutator. In other
words,

ρ : g→ gl(V ) such that

ρ([x, y]g) = [ρ(x), ρ(y)]gl(V ) := ρ(x) ◦ ρ(y)− ρ(y) ◦ ρ(x) ∀x, y ∈ g

where ◦ here refers to the standard composition of linear endomorphisms of V .
A sub-representation of (V, ρ) is a subspace W ⊂ V which is closed under the action of ρ(g), an irre-

ducible representation is one with no sub-representations (analogous to a transitive G−set), and a faithful
representation is one in which ρ is injective.

With this definition in hand, the reader should note that it is important to detach their perception of a
lie algebra from its representations. The actual lie algebra is typically defined abstractly only in terms of its
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basis {e1, ...} and the so-called structure constants fijk which determine the commutation relations in the
following way:

[ei, ej ] =
∑
k

fijkek

While these constants define the algebra in the most abstract manner, they are intimately tied to a specific
representation which we will now define.

Def: Arguably the most important representation, and one that always exists, is the adjoint representa-
tion (g, ad):

ad :

{
g→ gl(g)

x 7→ adx

adx :

{
g→ g

y 7→ [x, y]g

Def: An ideal of g is a sub-algebra I ⊂ g such that [I, g] ⊂ I. Equivalently, I ⊂ g is an ideal iff (I, ad)
is a sub-representation of the adjoint representation, (g, ad).

The quotient vector space g/I can be naturally interpreted as a lie algrebra with a lie bracket passed
down from g only when I is an ideal. More generally, given a sub-representation W ⊂ V , one can discuss
the quotient representation where g is made to act on V/W .

Philosophy: Given a representation, an interesting question is how to maximally reduce the information
encoded in ρ(g). It turns out that in most relevant cases, there is a decomposition V =W1⊕...⊕Wn in which
(Wi)i are irreducible sub-representations. One cannot help but be reminded of the orbit decomposition of a
G−set. Further, the above remark on quotients should alert the reader to the following analogy:

closed under adjoint g action := ideal ←→ lie algebra

≀
closed under g action := sub-representation ←→ representation

≀
closed under conjugate G action := normal subgroup ←→ group

≀
closed under multiplicative action := ideal←→ ring

Remark: Given a representation of g, (V, ρ),

σV : (x, y) 7→ tr(ρ(x)ρ(y))

always defines a symmetric, g−invariant bilinear form. Here, g−invariance means σV ([x, y]g, z) = σV (x, [y, z]g)
for all x, y, z ∈ g. The importance of g−invariance is its equivalency to the following:

σV (ady(x), z) = −σV (x, ady(z))∀x, y, z ∈ g

which tells us that σV is invariant with respect to the following symmetry:

S :

{
g× g→ g× g

(x, z) 7→ (−ad−1(x), ad(z))

Def: The Killing form, k : g× g→ K, is the symmetric, g−invariant, bilinear form defined by

k(x, y) := tr(adx ◦ ady)

Variations on the form σV , like k, are incredibly useful in both mathematics and physics. we will explore
this in more detail in Section 7.
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2 A Simple Example (sl2)

This crucial example of a lie algebra will already be familiar to any student of quantum mechanics. It is the
complex vector space of the 2× 2 trace-free matrices. Consider the following objects:

h :=

(
1 0
0 −1

)
, e :=

(
0 1
0 0

)
, f :=

(
0 0
1 0

)
We then define[2]

sl2 := spanC{h, e, f}
While the familiarity may not jump out at first glance, a further investigation reveals that sl2 is simply
the span of the Pauli Matrices. Here we have chosen a basis that is tailored to the mathematician, but the
decision makes no difference. The commutation relations for sl2 are presented as follows:

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h

If we consider the sl2 as the set of column vectors of the form

(
λ1

λ2

λ3

)
:= λ1h + λ2e + λ3f , then we can

readily obtain the adjoint representation.

adh =

0 0 0
0 2 0
0 0 −2

 , ade =

 0 0 1
−2 0 0
0 0 0

 , adf =

0 −1 0
0 0 0
2 0 0


This gives

k(h, e) = 0, k(h, f) = 0, k(e, f) = 2

While the adjoint representation is incredibly valuable, this example shows that it is certainly not the
most compact way to represent the lie algebra.

3 An Immediate Instantiation

Recall from quantum mechanics that for an electron around a nucleus we can diagonalize the Hilbert space
H with respect to the operators H,J2, Jz, Sz because they all commute. We often present this as[3]

H = spanC{|n, l,ml,ms⟩ : n ∈ N, 0 ≤ l ≤ n,−l ≤ ml ≤ l,ms = ±1/2}

Because we already mentioned the connection between the Pauli Matricies and sl2, the reader can prob-
ably recognize that for a fixed n, l,ml, the vector space

V := {|n, l,ml,ms⟩ : ms = ±1/2}

admits a two-dimensional representation of the sl2.
Let us instead focus on the operators

J2, Jz, J+, J− ∈ gl(H).

J2 measures total orbital angular momentum, Jz measures the projection of this orbital angular momen-
tum onto the z-axis, and J± raise and lower the quantum number ml.

J2|n, l,ml,ms⟩ = ℏ2l(l + 1)|n, l,ml,ms⟩
Jz|n, l,ml,ms⟩ = ℏml|n, l,ml,ms⟩

J±|n, l,ml,ms⟩ = λ±|n, l,ml ± 1,ms⟩
Let us also recall the relevant commutation relations:

[Jz, J±] = ±ℏJ±, [J+, J−] = 2ℏJz

It is clear to see the analogy with the lie algebra sl2 and if one sets ℏ := 1 and fixes the numbers n, l,ms,
it becomes even more apparent. What we have is a representation of sl2, (Vn,l,ms

, ρ), defined as follows

Vn,l,ms
:= {|n, l,ml,ms⟩ : ml ∈ Z ∩ [−j,+j]}
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ρ :


h 7→ Jz

e 7→ J+

f 7→ J−

Further, every finite and even dimensional irreducible representation of sl2 is essentially realized by Vn,l,ms

for some l. Let us step back to revel in this idea. The quantum theory described here was postulated to
explain the behavior of the electron around a nucleus and it is the beginning of a long story of representation
theory in quantum physics. In this light, we see that encoded into the essence of every electron is the
space of all even-dimensional irreducible representations of this primary example of a lie algebra, sl2. The
measurements corresponding to the operators H,J2, Sz can tell you what representation your electron is
operating in while a measurement defined by Jz projects this representation onto the z-axis of Spacetime.

Philosophy: If these operators are interpreted as measurement, shouldn’t they really live in H itself (be-
cause measurements don’t come from anywhere outside the universe)? Well, the measurement corresponding
to an operator A is actually the map α : |ψ⟩ 7→ ⟨ψ|A|ψ⟩, so α ∈ H∗. Thankfully, we have the Reisz Represen-
tation Theorem, which tells us that α(·) ≡ ⟨α|· for some ⟨α| ∈ H [4]. Therefore, this idea of measurements
living in the space itself is spared. The question is then of the space of operators. Is A a physical object or
is it simply a mathematical tool to get to our measuring state |α⟩?

4 Root Space Decomposition

To gain more insight into the structure of a lie algebra, or any mathematical structure for that matter, one
can separate it into smaller structures and investigate how the different structures interact. The main way
to do this in lie theory is to use root space decomposition, a method largely pioneered by Élie Cartan. For
this section, we will assume that g is a semisimple lie algebra over C.

Def: A semisimple lie algebra g is one which does not contain a solvable ideal. This means that there is
no ideal I ⊂ g in which the sequence

(I, [I, I], [[I, I], [I, I]], ...)

ultimately gives the zero subspace {0} ⊂ g. Another way to look at this is that there is no nontrivial
degenerate ideal I ′ ⊂ g such that [I ′, I ′] = 0.

Def: An element x ∈ g is said to be semisimple if adx is diagonalizable.

The following is a step-by-step guide on the process of root space decomposition[2].

1. Obtain the cartan subalgebra h. This is the maximal commuting subalgebra consisting of semisimple
elements.

2. Find a basis, β, of g which is an eigenbasis with respect to the operators {adh : h ∈ h}. This is possible
by the abelian nature of h.

3. For each basis element b ∈ β find the elements of the dual space αb ∈ h∗ such that

adh(b) = αb(h)b

for all h ∈ h.

4. The set α := {αb ̸= 0 : b ∈ β} is then your root system. Note that |α| = dim(g \ h) because αh ≡ 0 for
all h ∈ β ∩ h.

5. Find the simple roots sα ⊂ α which is the minimal set s ⊂ α such that

α ⊂ spanZ≥0
(s) ∪ spanZ≤0

(s)

An important result is that sα is precisely the set of roots that cannot be written as an integer sum of
two other roots.
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To summarize, sα forms a sort of basis (we actually call it a base) of your root system. The root system
consists of linear functionals αb ∈ h which encodes the action of the cartan subalgebra on the eigenbasis
element b. With a little more knowledge on the theory of root systems, one can almost entirely reconstruct
the lie algebra g from its base sα. We will not get into these details here, but this is the beginning of
the process of classifying all semisimple lie algebras. Further, one can define objects in the root system
called fundamental weights by their relation to the simple roots. These weights allow us to classify the
finite representations of our lie algebra. In this world of weights, we find analogs of the raising and lowering
operators in sl2 which we refer to as ladder operations. We have already seen in our angular momentum
example that information about the possible representations of a lie algebra can be vital to our understanding
of fundamental physics.

5 The Exponential Map[5]

Def: A lie group G is a group which is also a differentiable manifold. If G ⊂ GLn(K), then we can define
its generating lie algebra, g, as

g := {X ∈ gl(K) : exp(x) ∈ G}

where the exponential map is defined by its Taylor series:

exp : X 7→ 1
∑
n∈N

Xn

n!

Using basic properties of the exponential, one can check that g is indeed a vector space that is closed under
commutation.

From a more geometric viewpoint, g can be viewed as the tangent space at the identity element of
G, T1(G). To see how this works, begin with the knowledge that g is a vector space so etX ∈ G for all
real t (assuming K = R,C). Further, e0 = 1 so etX is a differentiable path in G starting from identity.
Thus, d

dt|0 e
tX = XetX |0 = X ∈ T1(G). Now to ensure a one-to-one correspondence, we must ensure that

exp(A) ∈ G for all A ∈ T1(G). In differential geometry, we define the geodesic from 1 in the direction of A
to be the unique solution to

d

dt
γ(t) = Aγ(t), γ(0) = 1

We know that in differentiable matrix groups, the usual exponential function is the solution to this ODE
which gives the equivalency.

6 The Schrodinger Equation[3]

In searching for a guiding differential equation for our quantum state |ψ0⟩, we begin with the idea that time
evolution should be a unitary operation. In other words, |ψ(t)⟩ = U(t)|ψ0⟩ for some unitary operator U . We
set this requirement so that our state remains normalized throughout time: unitary operators are those in
which U†U = 1 so ⟨ψ(t)|ψ(t)⟩ = ⟨ψ0|U†(t)U(t)|ψ0⟩ = 1. With the knowledge that unitary matrices make up
a differentiable manifold, we can safely assume that U(t) = exp(tH ′) for some H ∈ u. If we now differentiate
with time we get

d

dt
|ψ(t)⟩ = d

dt
exp(tH ′)|ψ0⟩ = H ′ exp(tH ′)|ψ0⟩ = H ′|ψ(t)⟩

From here, one imposes that H ′ should be proportional to the Hamiltonian operator H (a consequence of
Noether’s Theorem in classical mechanics), that it should have real eigenvalues, and that these eigenvalues
should be discretized by ℏ. These requirements then produce the ansatz that H ′ = i

ℏH.

7 A Brief Introduction To Yang-Mills Theory[6]

It is important to first remark that the author is only beginning his journey in understanding gauge theory
and the following should be taken as a very general and potentially incorrect overview.

With that out of the way, consider the following steps which are normally taken to obtain the lagrangian
density of a Yang-Mills Theory with gauge group G.
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1. Obtain the lie algebra g of the gauge group G.

2. Identify the generators T a of the fundamental representation, (V, ρ), of g and ensure that they are
properly orthonormalized:

σV (T
a, T b) =

1

2
δab

The reader can take the fundemental representation to be defined as the minimal dimensional, faithful
representation. In reality, the definition uses the concept “weights” which is a generalization of the
root system to arbitrary representations of the algebra.

From here on out, we will identify g with its fundamental representation.

3. Define the gauge potential over Spacetime

Aµ(x) = Aa
µ(x)T

a

This object is very ambiguous and hovers somewhere between the lie algebra and the cotangent space
of Spacetime. To gain more insight, observe how it acts on a vector field V µ.

AµV
µ = Aa

0T
aV 0 + ...+Aa

3T
aV 3 ∈ g

so essentially, Aµ : TM → g and this map is defined by the gauge field Aa
µ. The gauge field is really

just a field of linear transformations over Spacetime. In this light, the µth column of the matrix Aa
µ is

the vector Aµ ∈ g.

4. Define the field strength
Fµν := ∂µAν − ∂νAµ − i[Aµ, Aν ]g

This is essentially the curvature of the gauge potential.

5. The Yang-Mills Lagrangian density LYM is then defined as

LYM := tr(FµνF
µν)

The object FµνF
µν lies inside g. Denote T := FµνF

µν . If T admits a square root within g, then we
have the following equality:

LYM := σV (
√
T ,
√
T )
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